Spark Pool Configuration Guide | CONFIDENTIAL

FABRIC SPARK POOL
CONFIGURATION GUIDE

Starter Pools • Custom Pools • Runtime • Libraries • Optimization

Version 1.0 | January 2026

Table of Contents

1. Spark Pools in Fabric
Microsoft Fabric provides managed Apache Spark pools for data engineering workloads. Understanding pool types and configuration options enables optimal performance and cost efficiency.
1.1 Pool Types
Starter Pool
Pre-configured pool that starts instantly for interactive development.
1. Instant start (no provisioning delay)
1. Shared across workspace users
1. Medium node size
1. Auto-scales 1-5 nodes
1. Best for: Development, exploration, small workloads
Custom Pool
User-configured pool with specific node sizes and counts.
1. Configurable node size (Small to XXLarge)
1. Fixed or auto-scaling node count
1. Dedicated resources
1. Custom library configuration
1. Best for: Production workloads, large-scale processing
1.2 Node Sizes
	Size
	Cores
	Memory
	Use Case
	CU/Node

	Small
	4 vCores
	32 GB
	Light workloads
	4 CU

	Medium
	8 vCores
	64 GB
	Standard ETL
	8 CU

	Large
	16 vCores
	128 GB
	Heavy processing
	16 CU

	XLarge
	32 vCores
	256 GB
	Memory-intensive
	32 CU

	XXLarge
	64 vCores
	512 GB
	Extreme scale
	64 CU

1.3 Pool Selection Guidelines
	Scenario
	Recommended Pool
	Configuration

	Interactive development
	Starter Pool
	Default settings

	Small ETL (<10GB)
	Starter Pool
	Default settings

	Medium ETL (10-100GB)
	Custom Pool
	Medium, 2-8 nodes

	Large ETL (>100GB)
	Custom Pool
	Large, 4-16 nodes

	ML Training
	Custom Pool
	XLarge, 2-8 nodes

	Production batch
	Custom Pool
	Sized to workload

2. Creating Custom Pools
Create custom Spark pools when starter pools don't meet requirements for node size, library configuration, or dedicated resources.
2.1 Pool Creation Steps
1. Navigate to Workspace Settings > Data Engineering
1. Click 'New Pool'
1. Configure: Name, Node size, Node count, Auto-scale settings
1. Configure: Auto-pause timeout
1. Add custom libraries (optional)
1. Click Create
2.2 Auto-Scale Configuration
Configure auto-scaling to balance performance and cost:
Minimum nodes: 1-2 (always available)
Maximum nodes: Based on workload peak
Scale-up trigger: When jobs queue due to resource constraints
Auto-Scale Guidelines
1. Set minimum to handle typical workload
1. Set maximum to handle peak workload
1. Consider cost implications of high maximum
1. Monitor utilization to right-size over time
2.3 Auto-Pause Configuration
Configure auto-pause to stop billing when pool is idle:
1. Default: 15 minutes
1. Range: 5 minutes to 7 days
1. Recommendation: 15-30 minutes for development
1. Production: Consider longer or disable if frequent use
Note: First notebook execution after pause takes longer due to pool warm-up.
2.4 Environment Configuration
Configure Spark environment settings for the pool:
Workspace Settings > Data Engineering > Spark Settings

Runtime version
Runtime: 1.2 (Spark 3.4, Python 3.10)

Default Spark configuration
spark.sql.shuffle.partitions: 200
spark.sql.adaptive.enabled: true
spark.databricks.delta.optimizeWrite.enabled: true

3. Runtime Configuration
Fabric Spark Runtime provides the Spark engine, libraries, and configuration. Select appropriate runtime for compatibility and features.
3.1 Runtime Versions
	Runtime
	Spark
	Python
	Status

	1.1
	3.3
	3.10
	GA - Stable

	1.2
	3.4
	3.10
	GA - Recommended

	1.3
	3.5
	3.11
	Preview

3.2 Included Libraries
Each runtime includes pre-installed libraries:
Data Processing
1. pandas, numpy, scipy
1. pyarrow, fastparquet
1. delta-spark
Machine Learning
1. scikit-learn, xgboost, lightgbm
1. mlflow
1. tensorflow, pytorch (optional)
Visualization
1. matplotlib, seaborn
1. plotly
3.3 Spark Configuration
Configure Spark settings at session or pool level:
Session-Level Configuration
In notebook
spark.conf.set('spark.sql.shuffle.partitions', 100)
spark.conf.set('spark.sql.adaptive.enabled', 'true')
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')
Common Configurations
	Configuration
	Default
	Recommendation

	spark.sql.shuffle.partitions
	200
	auto (with AQE)

	spark.sql.adaptive.enabled
	true
	true

	spark.sql.broadcastTimeout
	300
	600 for large dims

	spark.databricks.delta.optimizeWrite
	true
	true

4. Library Management
Manage custom libraries beyond the built-in runtime packages.
4.1 Library Installation Methods
Inline Installation (Notebook)
Install for current session only
%pip install package-name

Install specific version
%pip install package-name==1.2.3

Install from requirements.txt
%pip install -r /lakehouse/default/Files/requirements.txt
Environment Configuration
Install libraries at environment level for all sessions:
1. Workspace Settings > Data Engineering > Library Management
1. Add PyPI packages or upload wheel files
1. Libraries installed on pool startup
Custom Environment
Create custom environments for specific library combinations:
1. Create Environment item in workspace
1. Define base runtime and additional packages
1. Attach environment to notebooks or pools
1. Version control environment definitions
4.2 Library Best Practices
1. Pin library versions for reproducibility
1. Document library dependencies
1. Test library compatibility before production
1. Use environment files (requirements.txt) for consistency
1. Minimize inline installations for production notebooks
4.3 Troubleshooting Libraries
Check installed packages
%pip list

Check specific package
%pip show package-name

Reinstall package
%pip install --force-reinstall package-name

5. Performance Tuning
Optimize Spark pool configuration for workload requirements.
5.1 Memory Configuration
Configure memory allocation based on workload:
Driver memory (for collecting results)
spark.conf.set('spark.driver.memory', '8g')

Executor memory (for processing)
spark.conf.set('spark.executor.memory', '16g')

Memory overhead for off-heap
spark.conf.set('spark.executor.memoryOverhead', '4g')
Memory Guidelines
1. Increase driver memory for large collect() operations
1. Increase executor memory for wide transformations
1. Add overhead for memory-intensive UDFs
1. Monitor GC pauses for memory pressure signs
5.2 Parallelism Configuration
Shuffle partitions (default 200)
spark.conf.set('spark.sql.shuffle.partitions', 'auto')

Default parallelism
spark.conf.set('spark.default.parallelism', 100)

Coalesce partitions with AQE
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')
5.3 Adaptive Query Execution
Enable AQE for automatic runtime optimization:
Enable AQE (default in Fabric)
spark.conf.set('spark.sql.adaptive.enabled', 'true')

Auto-coalesce partitions
spark.conf.set('spark.sql.adaptive.coalescePartitions.enabled', 'true')

Handle skewed joins
spark.conf.set('spark.sql.adaptive.skewJoin.enabled', 'true')

Convert to broadcast join
spark.conf.set('spark.sql.adaptive.localShuffleReader.enabled', 'true')
5.4 Delta Lake Optimization
Optimize write (auto-compaction)
spark.conf.set('spark.databricks.delta.optimizeWrite.enabled', 'true')

Auto-compact small files
spark.conf.set('spark.databricks.delta.autoCompact.enabled', 'true')

Cache metadata
spark.conf.set('spark.databricks.delta.stalenessLimit', '86400000')

6. Monitoring and Troubleshooting
6.1 Spark UI
Access Spark UI from notebook to monitor job execution:
1. Jobs tab: Overall job progress and stages
1. Stages tab: Task-level details and metrics
1. Storage tab: Cached DataFrames and memory usage
1. Environment tab: Configuration and library versions
1. SQL tab: Query plans and execution details
6.2 Common Issues
Out of Memory
1. Symptom: java.lang.OutOfMemoryError
1. Cause: Data too large for available memory
1. Solutions: Increase node size, add nodes, partition data
1. Prevention: Filter early, avoid collect(), cache selectively
Slow Performance
1. Symptom: Jobs taking longer than expected
1. Cause: Data skew, shuffle overhead, small files
1. Solutions: Repartition, broadcast joins, optimize tables
1. Prevention: Monitor Spark UI, enable AQE
Task Failures
1. Symptom: Tasks failing repeatedly
1. Cause: Data issues, resource constraints, code errors
1. Solutions: Check logs, increase resources, fix data
1. Prevention: Data validation, error handling, testing
6.3 Monitoring Commands
Check Spark version
spark.version

Check configuration
spark.conf.getAll

Check cluster resources
spark.sparkContext.defaultParallelism

Explain query plan
df.explain(True)

7. Best Practices Summary
7.1 Pool Configuration
1. Use Starter Pool for development and small workloads
1. Create Custom Pools for production workloads
1. Right-size nodes based on workload characteristics
1. Configure auto-scale for variable workloads
1. Enable auto-pause to optimize costs
7.2 Runtime Configuration
1. Use latest stable runtime for new development
1. Pin runtime version for production stability
1. Enable AQE for automatic optimization
1. Configure Delta optimizations for lakehouse workloads
1. Document configuration decisions
7.3 Library Management
1. Use environment files for reproducibility
1. Pin library versions
1. Test compatibility before production
1. Minimize inline installations
1. Document library requirements
7.4 Performance
1. Filter and select early
1. Use broadcast for small tables
1. Monitor Spark UI for bottlenecks
1. Enable AQE features
1. Right-size pools based on workload

Appendix: Document Information
	Document Title
	Spark Pool Configuration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
